Create Your First AI Agent: Complete Step-by-Step Guide
Master the art of AI agent development with this comprehensive tutorial. Learn to build custom agents from scratch, implement planning modes, integrate tools, and avoid the dreaded black box problem that 63% of developers struggle with.
Building AI agents feels like magic when it works - and like wrestling with a black box when it doesn't. If you're among the 63% of developers who struggle with unpredictable AI behavior, this tutorial will transform your approach. We'll build a real AI agent from scratch, implement planning modes, integrate tools, and most importantly, make it debuggable and reliable.
Prerequisites
Before we dive in, you'll need:
- Basic understanding of TypeScript/JavaScript
- Familiarity with async/await patterns
- Claude Fast installed and configured
- A project ready for agent integration
All code examples are complete and runnable. Feel free to copy and adapt them for your specific use case.
Understanding AI Agents
An AI agent isn't just a chatbot - it's an autonomous system that can:
- Understand complex objectives
- Break down tasks into steps
- Use tools to accomplish goals
- Validate its own work
- Learn from context
Let's build one that automates code reviews.
Step 1: Define Your Agent's Purpose
Every great agent starts with a clear purpose. We'll build a "Code Review Agent" that:
- Analyzes code changes
- Checks for common issues
- Suggests improvements
- Validates against project standards
- Generates review summaries
interface CodeReviewAgent {
name: "code-reviewer"
purpose: "Automated code review with actionable feedback"
capabilities: [
"Static analysis",
"Pattern detection",
"Security scanning",
"Performance analysis",
"Style checking"
]
tools: ["read", "grep", "analyze", "report"]
}
Step 2: Implement the Planning Mode
The key to avoiding the "black box" problem is making your agent explain its thinking before acting. This is called Planning Mode.
// agent-config.ts
export const codeReviewAgent = {
name: "code-reviewer",
systemPrompt: `You are a senior code reviewer. When given code to review:
1. PLAN your review approach before starting
2. Explain what you'll check and why
3. Execute the review systematically
4. Provide actionable feedback
Always think step-by-step and explain your reasoning.`,
planningPrompt: `Before reviewing code, create a plan that includes:
- What aspects you'll review (security, performance, style, etc.)
- What patterns you'll look for
- How you'll prioritize issues
- What tools you'll use`
}
Step 3: Create the Agent Class
Now let's build the actual agent implementation:
// code-review-agent.ts
import { ClaudeFastAgent } from '@claude-fast/core';
export class CodeReviewAgent extends ClaudeFastAgent {
constructor() {
super({
name: 'code-reviewer',
description: 'Performs comprehensive code reviews',
model: 'claude-3-opus',
});
}
async plan(request: ReviewRequest): Promise<ReviewPlan> {
// Force the agent to plan before acting
const plan = await this.think({
prompt: `Plan a code review for these changes:
Files: ${request.files.join(', ')}
Context: ${request.context}
Create a detailed review plan.`,
mode: 'planning'
});
return this.parsePlan(plan);
}
async execute(plan: ReviewPlan): Promise<ReviewResult> {
const results = {
issues: [],
suggestions: [],
summary: ''
};
// Execute each planned check
for (const check of plan.checks) {
const checkResult = await this.performCheck(check);
results.issues.push(...checkResult.issues);
results.suggestions.push(...checkResult.suggestions);
}
// Generate summary
results.summary = await this.generateSummary(results);
return results;
}
private async performCheck(check: PlannedCheck): Promise<CheckResult> {
// Use tools to analyze code
const fileContent = await this.tools.read(check.file);
switch (check.type) {
case 'security':
return this.securityCheck(fileContent);
case 'performance':
return this.performanceCheck(fileContent);
case 'style':
return this.styleCheck(fileContent);
default:
return this.generalCheck(fileContent);
}
}
}
Step 4: Integrate Tool Usage
Agents become powerful when they can use tools. Let's add tool integration:
// tools/agent-tools.ts
export class AgentTools {
async read(filePath: string): Promise<string> {
// Read file content
return await fs.readFile(filePath, 'utf-8');
}
async grep(pattern: string, filePath: string): Promise<GrepResult[]> {
// Search for patterns in code
const content = await this.read(filePath);
const lines = content.split('\n');
const results = [];
lines.forEach((line, index) => {
if (new RegExp(pattern).test(line)) {
results.push({
file: filePath,
line: index + 1,
content: line,
match: pattern
});
}
});
return results;
}
async analyze(code: string, rules: AnalysisRules): Promise<AnalysisResult> {
// Perform static analysis
return {
complexity: this.calculateComplexity(code),
issues: this.findIssues(code, rules),
patterns: this.detectPatterns(code)
};
}
}
Keep tools focused and composable. It's better to have many simple tools that agents can combine than few complex ones.
Step 5: Implement Validation and Feedback Loops
To ensure reliability, agents must validate their own work:
// validation/agent-validator.ts
export class AgentValidator {
async validateReview(
review: ReviewResult,
originalRequest: ReviewRequest
): Promise<ValidationResult> {
const validation = {
isComplete: true,
missingChecks: [],
confidence: 0
};
// Check if all requested files were reviewed
const reviewedFiles = new Set(review.issues.map(i => i.file));
const missingFiles = originalRequest.files.filter(
f => !reviewedFiles.has(f)
);
if (missingFiles.length > 0) {
validation.isComplete = false;
validation.missingChecks.push(...missingFiles);
}
// Calculate confidence score
validation.confidence = this.calculateConfidence(review);
return validation;
}
private calculateConfidence(review: ReviewResult): number {
let score = 0;
// More detailed feedback = higher confidence
score += Math.min(review.issues.length * 10, 40);
score += Math.min(review.suggestions.length * 5, 30);
score += review.summary.length > 100 ? 30 : 15;
return Math.min(score, 100);
}
}
Step 6: Make It Observable
The biggest complaint about AI agents? "I don't know what it's doing!" Let's fix that:
// observability/agent-observer.ts
export class AgentObserver {
private listeners: ObserverCallback[] = [];
subscribe(callback: ObserverCallback) {
this.listeners.push(callback);
}
emit(event: AgentEvent) {
this.listeners.forEach(cb => cb(event));
}
}
// In your agent
class ObservableCodeReviewAgent extends CodeReviewAgent {
private observer = new AgentObserver();
async execute(plan: ReviewPlan): Promise<ReviewResult> {
this.observer.emit({
type: 'execution_started',
data: { plan }
});
for (const check of plan.checks) {
this.observer.emit({
type: 'check_started',
data: { check }
});
const result = await this.performCheck(check);
this.observer.emit({
type: 'check_completed',
data: { check, result }
});
}
// ... rest of execution
}
}
Step 7: Add Error Handling and Recovery
Robust agents handle failures gracefully:
// error-handling/agent-errors.ts
export class AgentErrorHandler {
async executeWithRetry<T>(
operation: () => Promise<T>,
options: RetryOptions = {}
): Promise<T> {
const maxRetries = options.maxRetries || 3;
const backoff = options.backoff || 1000;
for (let attempt = 1; attempt <= maxRetries; attempt++) {
try {
return await operation();
} catch (error) {
if (attempt === maxRetries) {
throw new AgentExecutionError(
`Failed after ${maxRetries} attempts`,
error
);
}
await this.delay(backoff * attempt);
// Log retry attempt
console.log(`Retry attempt ${attempt}/${maxRetries}`);
}
}
}
private delay(ms: number): Promise<void> {
return new Promise(resolve => setTimeout(resolve, ms));
}
}
Putting It All Together
Let's see our agent in action:
// example-usage.ts
async function runCodeReview() {
const agent = new ObservableCodeReviewAgent();
// Subscribe to events for visibility
agent.observer.subscribe((event) => {
console.log(`[${event.type}]`, event.data);
});
// Create review request
const request: ReviewRequest = {
files: ['src/api/users.ts', 'src/components/UserForm.tsx'],
context: 'Adding user management features',
standards: ['security', 'performance', 'react-best-practices']
};
try {
// Plan the review
console.log('๐ค Planning review...');
const plan = await agent.plan(request);
console.log('๐ Review plan:', plan);
// Execute the review
console.log('๐ Executing review...');
const result = await agent.execute(plan);
// Validate results
console.log('โ
Validating results...');
const validation = await validator.validateReview(result, request);
if (validation.confidence > 80) {
console.log('๐ Review complete with high confidence');
return result;
} else {
console.log('โ ๏ธ Low confidence, requesting human review');
return { ...result, needsHumanReview: true };
}
} catch (error) {
console.error('โ Review failed:', error);
throw error;
}
}
Advanced Patterns
Pattern 1: Multi-Agent Coordination
class ReviewCoordinator {
async comprehensiveReview(request: ReviewRequest) {
// Run specialized agents in parallel
const [security, performance, style] = await Promise.all([
this.securityAgent.review(request),
this.performanceAgent.review(request),
this.styleAgent.review(request)
]);
// Merge and prioritize results
return this.mergeResults([security, performance, style]);
}
}
Pattern 2: Learning from Feedback
class LearningAgent extends CodeReviewAgent {
private feedbackStore = new FeedbackStore();
async incorporateFeedback(
review: ReviewResult,
feedback: UserFeedback
) {
// Store feedback for pattern learning
await this.feedbackStore.save({
review,
feedback,
timestamp: Date.now()
});
// Update agent prompts based on patterns
if (feedback.type === 'false_positive') {
this.adjustSensitivity(feedback.issue);
}
}
}
Pattern 3: Context-Aware Reviews
class ContextAwareReviewAgent extends CodeReviewAgent {
async loadProjectContext(projectPath: string) {
const context = {
dependencies: await this.analyzeDependencies(projectPath),
patterns: await this.detectProjectPatterns(projectPath),
standards: await this.loadProjectStandards(projectPath)
};
this.setContext(context);
}
async performCheck(check: PlannedCheck): Promise<CheckResult> {
// Use project context for more accurate reviews
const projectAwareRules = this.adaptRulesToProject(
check.rules,
this.context
);
return super.performCheck({
...check,
rules: projectAwareRules
});
}
}
Testing Your Agent
describe('CodeReviewAgent', () => {
it('should create detailed review plans', async () => {
const agent = new CodeReviewAgent();
const plan = await agent.plan(mockRequest);
expect(plan.checks).toHaveLength(3);
expect(plan.checks[0].type).toBe('security');
});
it('should handle tool failures gracefully', async () => {
const agent = new CodeReviewAgent();
agent.tools.read = jest.fn().mockRejectedValue(
new Error('File not found')
);
const result = await agent.execute(mockPlan);
expect(result.errors).toContain('File not found');
});
it('should provide observable execution', async () => {
const events = [];
agent.observer.subscribe(e => events.push(e));
await agent.execute(mockPlan);
expect(events).toContainEqual({
type: 'execution_started',
data: expect.any(Object)
});
});
});
Common Pitfalls and Solutions
Pitfall 1: Over-Engineering
Problem: Creating overly complex agents that are hard to debug Solution: Start simple, add complexity only when needed
Pitfall 2: Insufficient Logging
Problem: "Black box" behavior when things go wrong Solution: Log every decision, use structured observability
Pitfall 3: Rigid Patterns
Problem: Agents that can't adapt to edge cases Solution: Build in flexibility and fallback behaviors
Pitfall 4: Poor Error Messages
Problem: Cryptic failures that don't help users Solution: Provide context-rich, actionable error messages
Best Practices Checklist
- โ Clear, focused purpose defined
- โ Planning mode implemented
- โ Tools integrated and tested
- โ Validation logic in place
- โ Observable execution flow
- โ Error handling implemented
- โ Feedback loops established
- โ Performance monitoring added
- โ Documentation complete
- โ Test coverage > 80%
What's Next?
Congratulations! You've built a production-ready AI agent that:
- Plans before acting
- Uses tools effectively
- Validates its own work
- Provides visibility into its process
- Handles errors gracefully
Next Steps:
- Extend Your Agent: Add more specialized checks
- Build Agent Teams: Coordinate multiple agents
- Add Learning: Implement feedback-based improvements
- Scale Up: Handle larger codebases and parallel execution
- Share Your Work: Contribute to the agent ecosystem
You've mastered the fundamentals of AI agent development. The patterns you've learned here apply to any type of agent - from code reviewers to content creators to data analysts. What will you build next?
Resources and Community
- Claude Fast Agent SDK Documentation
- Example Agents Repository
- Agent Development Best Practices
- Community Discord
Building AI agents is both an art and a science. The key is starting simple, making things observable, and iterating based on real usage. Happy building!