Create Your First AI Agent: Complete Step-by-Step Guide

Master the art of AI agent development with this comprehensive tutorial. Learn to build custom agents from scratch, implement planning modes, integrate tools, and avoid the dreaded black box problem that 63% of developers struggle with.

Abdo El-Mobayadยทยท9 min read

Building AI agents feels like magic when it works - and like wrestling with a black box when it doesn't. If you're among the 63% of developers who struggle with unpredictable AI behavior, this tutorial will transform your approach. We'll build a real AI agent from scratch, implement planning modes, integrate tools, and most importantly, make it debuggable and reliable.

Prerequisites

Before we dive in, you'll need:

  • Basic understanding of TypeScript/JavaScript
  • Familiarity with async/await patterns
  • Claude Fast installed and configured
  • A project ready for agent integration

Understanding AI Agents

An AI agent isn't just a chatbot - it's an autonomous system that can:

  • Understand complex objectives
  • Break down tasks into steps
  • Use tools to accomplish goals
  • Validate its own work
  • Learn from context

Let's build one that automates code reviews.

Step 1: Define Your Agent's Purpose

Every great agent starts with a clear purpose. We'll build a "Code Review Agent" that:

  • Analyzes code changes
  • Checks for common issues
  • Suggests improvements
  • Validates against project standards
  • Generates review summaries
Agent Specification
interface CodeReviewAgent {
  name: "code-reviewer"
  purpose: "Automated code review with actionable feedback"
  capabilities: [
    "Static analysis",
    "Pattern detection", 
    "Security scanning",
    "Performance analysis",
    "Style checking"
  ]
  tools: ["read", "grep", "analyze", "report"]
}

Step 2: Implement the Planning Mode

The key to avoiding the "black box" problem is making your agent explain its thinking before acting. This is called Planning Mode.

// agent-config.ts
export const codeReviewAgent = {
  name: "code-reviewer",
  systemPrompt: `You are a senior code reviewer. When given code to review:

  1. PLAN your review approach before starting
  2. Explain what you'll check and why
  3. Execute the review systematically
  4. Provide actionable feedback
  
  Always think step-by-step and explain your reasoning.`,
  
  planningPrompt: `Before reviewing code, create a plan that includes:
  - What aspects you'll review (security, performance, style, etc.)
  - What patterns you'll look for
  - How you'll prioritize issues
  - What tools you'll use`
}

Step 3: Create the Agent Class

Now let's build the actual agent implementation:

// code-review-agent.ts
import { ClaudeFastAgent } from '@claude-fast/core';

export class CodeReviewAgent extends ClaudeFastAgent {
  constructor() {
    super({
      name: 'code-reviewer',
      description: 'Performs comprehensive code reviews',
      model: 'claude-3-opus',
    });
  }

  async plan(request: ReviewRequest): Promise<ReviewPlan> {
    // Force the agent to plan before acting
    const plan = await this.think({
      prompt: `Plan a code review for these changes:
        Files: ${request.files.join(', ')}
        Context: ${request.context}
        
        Create a detailed review plan.`,
      mode: 'planning'
    });

    return this.parsePlan(plan);
  }

  async execute(plan: ReviewPlan): Promise<ReviewResult> {
    const results = {
      issues: [],
      suggestions: [],
      summary: ''
    };

    // Execute each planned check
    for (const check of plan.checks) {
      const checkResult = await this.performCheck(check);
      results.issues.push(...checkResult.issues);
      results.suggestions.push(...checkResult.suggestions);
    }

    // Generate summary
    results.summary = await this.generateSummary(results);
    
    return results;
  }

  private async performCheck(check: PlannedCheck): Promise<CheckResult> {
    // Use tools to analyze code
    const fileContent = await this.tools.read(check.file);
    
    switch (check.type) {
      case 'security':
        return this.securityCheck(fileContent);
      case 'performance':
        return this.performanceCheck(fileContent);
      case 'style':
        return this.styleCheck(fileContent);
      default:
        return this.generalCheck(fileContent);
    }
  }
}

Step 4: Integrate Tool Usage

Agents become powerful when they can use tools. Let's add tool integration:

// tools/agent-tools.ts
export class AgentTools {
  async read(filePath: string): Promise<string> {
    // Read file content
    return await fs.readFile(filePath, 'utf-8');
  }

  async grep(pattern: string, filePath: string): Promise<GrepResult[]> {
    // Search for patterns in code
    const content = await this.read(filePath);
    const lines = content.split('\n');
    const results = [];

    lines.forEach((line, index) => {
      if (new RegExp(pattern).test(line)) {
        results.push({
          file: filePath,
          line: index + 1,
          content: line,
          match: pattern
        });
      }
    });

    return results;
  }

  async analyze(code: string, rules: AnalysisRules): Promise<AnalysisResult> {
    // Perform static analysis
    return {
      complexity: this.calculateComplexity(code),
      issues: this.findIssues(code, rules),
      patterns: this.detectPatterns(code)
    };
  }
}

Step 5: Implement Validation and Feedback Loops

To ensure reliability, agents must validate their own work:

// validation/agent-validator.ts
export class AgentValidator {
  async validateReview(
    review: ReviewResult,
    originalRequest: ReviewRequest
  ): Promise<ValidationResult> {
    const validation = {
      isComplete: true,
      missingChecks: [],
      confidence: 0
    };

    // Check if all requested files were reviewed
    const reviewedFiles = new Set(review.issues.map(i => i.file));
    const missingFiles = originalRequest.files.filter(
      f => !reviewedFiles.has(f)
    );

    if (missingFiles.length > 0) {
      validation.isComplete = false;
      validation.missingChecks.push(...missingFiles);
    }

    // Calculate confidence score
    validation.confidence = this.calculateConfidence(review);

    return validation;
  }

  private calculateConfidence(review: ReviewResult): number {
    let score = 0;
    
    // More detailed feedback = higher confidence
    score += Math.min(review.issues.length * 10, 40);
    score += Math.min(review.suggestions.length * 5, 30);
    score += review.summary.length > 100 ? 30 : 15;
    
    return Math.min(score, 100);
  }
}

Step 6: Make It Observable

The biggest complaint about AI agents? "I don't know what it's doing!" Let's fix that:

// observability/agent-observer.ts
export class AgentObserver {
  private listeners: ObserverCallback[] = [];

  subscribe(callback: ObserverCallback) {
    this.listeners.push(callback);
  }

  emit(event: AgentEvent) {
    this.listeners.forEach(cb => cb(event));
  }
}

// In your agent
class ObservableCodeReviewAgent extends CodeReviewAgent {
  private observer = new AgentObserver();

  async execute(plan: ReviewPlan): Promise<ReviewResult> {
    this.observer.emit({
      type: 'execution_started',
      data: { plan }
    });

    for (const check of plan.checks) {
      this.observer.emit({
        type: 'check_started',
        data: { check }
      });

      const result = await this.performCheck(check);

      this.observer.emit({
        type: 'check_completed',
        data: { check, result }
      });
    }

    // ... rest of execution
  }
}

Step 7: Add Error Handling and Recovery

Robust agents handle failures gracefully:

// error-handling/agent-errors.ts
export class AgentErrorHandler {
  async executeWithRetry<T>(
    operation: () => Promise<T>,
    options: RetryOptions = {}
  ): Promise<T> {
    const maxRetries = options.maxRetries || 3;
    const backoff = options.backoff || 1000;

    for (let attempt = 1; attempt <= maxRetries; attempt++) {
      try {
        return await operation();
      } catch (error) {
        if (attempt === maxRetries) {
          throw new AgentExecutionError(
            `Failed after ${maxRetries} attempts`,
            error
          );
        }

        await this.delay(backoff * attempt);
        
        // Log retry attempt
        console.log(`Retry attempt ${attempt}/${maxRetries}`);
      }
    }
  }

  private delay(ms: number): Promise<void> {
    return new Promise(resolve => setTimeout(resolve, ms));
  }
}

Putting It All Together

Let's see our agent in action:

// example-usage.ts
async function runCodeReview() {
  const agent = new ObservableCodeReviewAgent();
  
  // Subscribe to events for visibility
  agent.observer.subscribe((event) => {
    console.log(`[${event.type}]`, event.data);
  });

  // Create review request
  const request: ReviewRequest = {
    files: ['src/api/users.ts', 'src/components/UserForm.tsx'],
    context: 'Adding user management features',
    standards: ['security', 'performance', 'react-best-practices']
  };

  try {
    // Plan the review
    console.log('๐Ÿค” Planning review...');
    const plan = await agent.plan(request);
    console.log('๐Ÿ“‹ Review plan:', plan);

    // Execute the review
    console.log('๐Ÿ” Executing review...');
    const result = await agent.execute(plan);

    // Validate results
    console.log('โœ… Validating results...');
    const validation = await validator.validateReview(result, request);

    if (validation.confidence > 80) {
      console.log('๐Ÿ“Š Review complete with high confidence');
      return result;
    } else {
      console.log('โš ๏ธ Low confidence, requesting human review');
      return { ...result, needsHumanReview: true };
    }
  } catch (error) {
    console.error('โŒ Review failed:', error);
    throw error;
  }
}

Advanced Patterns

Pattern 1: Multi-Agent Coordination

class ReviewCoordinator {
  async comprehensiveReview(request: ReviewRequest) {
    // Run specialized agents in parallel
    const [security, performance, style] = await Promise.all([
      this.securityAgent.review(request),
      this.performanceAgent.review(request),
      this.styleAgent.review(request)
    ]);

    // Merge and prioritize results
    return this.mergeResults([security, performance, style]);
  }
}

Pattern 2: Learning from Feedback

class LearningAgent extends CodeReviewAgent {
  private feedbackStore = new FeedbackStore();

  async incorporateFeedback(
    review: ReviewResult,
    feedback: UserFeedback
  ) {
    // Store feedback for pattern learning
    await this.feedbackStore.save({
      review,
      feedback,
      timestamp: Date.now()
    });

    // Update agent prompts based on patterns
    if (feedback.type === 'false_positive') {
      this.adjustSensitivity(feedback.issue);
    }
  }
}

Pattern 3: Context-Aware Reviews

class ContextAwareReviewAgent extends CodeReviewAgent {
  async loadProjectContext(projectPath: string) {
    const context = {
      dependencies: await this.analyzeDependencies(projectPath),
      patterns: await this.detectProjectPatterns(projectPath),
      standards: await this.loadProjectStandards(projectPath)
    };

    this.setContext(context);
  }

  async performCheck(check: PlannedCheck): Promise<CheckResult> {
    // Use project context for more accurate reviews
    const projectAwareRules = this.adaptRulesToProject(
      check.rules,
      this.context
    );

    return super.performCheck({
      ...check,
      rules: projectAwareRules
    });
  }
}

Testing Your Agent

Agent Testing Strategy
describe('CodeReviewAgent', () => {
  it('should create detailed review plans', async () => {
    const agent = new CodeReviewAgent();
    const plan = await agent.plan(mockRequest);
    
    expect(plan.checks).toHaveLength(3);
    expect(plan.checks[0].type).toBe('security');
  });

  it('should handle tool failures gracefully', async () => {
    const agent = new CodeReviewAgent();
    agent.tools.read = jest.fn().mockRejectedValue(
      new Error('File not found')
    );

    const result = await agent.execute(mockPlan);
    expect(result.errors).toContain('File not found');
  });

  it('should provide observable execution', async () => {
    const events = [];
    agent.observer.subscribe(e => events.push(e));
    
    await agent.execute(mockPlan);
    
    expect(events).toContainEqual({
      type: 'execution_started',
      data: expect.any(Object)
    });
  });
});

Common Pitfalls and Solutions

Pitfall 1: Over-Engineering

Problem: Creating overly complex agents that are hard to debug Solution: Start simple, add complexity only when needed

Pitfall 2: Insufficient Logging

Problem: "Black box" behavior when things go wrong Solution: Log every decision, use structured observability

Pitfall 3: Rigid Patterns

Problem: Agents that can't adapt to edge cases Solution: Build in flexibility and fallback behaviors

Pitfall 4: Poor Error Messages

Problem: Cryptic failures that don't help users Solution: Provide context-rich, actionable error messages

Best Practices Checklist

AI Agent Development Checklist
  • โœ… Clear, focused purpose defined
  • โœ… Planning mode implemented
  • โœ… Tools integrated and tested
  • โœ… Validation logic in place
  • โœ… Observable execution flow
  • โœ… Error handling implemented
  • โœ… Feedback loops established
  • โœ… Performance monitoring added
  • โœ… Documentation complete
  • โœ… Test coverage > 80%

What's Next?

Congratulations! You've built a production-ready AI agent that:

  • Plans before acting
  • Uses tools effectively
  • Validates its own work
  • Provides visibility into its process
  • Handles errors gracefully

Next Steps:

  1. Extend Your Agent: Add more specialized checks
  2. Build Agent Teams: Coordinate multiple agents
  3. Add Learning: Implement feedback-based improvements
  4. Scale Up: Handle larger codebases and parallel execution
  5. Share Your Work: Contribute to the agent ecosystem

Resources and Community

Building AI agents is both an art and a science. The key is starting simple, making things observable, and iterating based on real usage. Happy building!

Related Posts